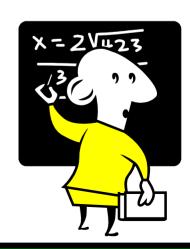


Southern California Edison

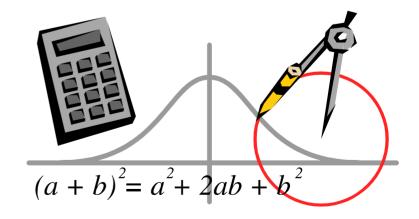
California Public Utilities Commission
R.01-10-024
Workshop
Value at Risk, Cash Flow at Risk
And Other Measures of Portfolio Risk
April 23, 2003, 10:00 A.M.
State Civic Center Complex
455 Golden Gate Ave, San Francisco
Meeting Room 9

Outline

- Risk metric tools review
 - Parametric
 - Probabilistic
 - Statistical
- Risk model constraints
- Hybrid techniques
- Evolving methods
- Application of risk metrics
- Conclusion on use of risk tools
- A roadmap is necessary
- DWR contract cost allocation creates a wild card



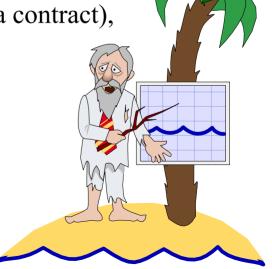
- For purposes of this presentation let's define a <u>risk tool</u> as a specific algorithm or series of calculations.
 - Example: calculating the median value of a distribution yields an expected value. The median is a risk tool. It can be used on its own or in combination with other tools.
- A <u>risk model</u> is a representation of some real world situation, or possible outcomes, by bundling a series of risk tools (algorithms) together.
- Most risk tools can be generalized into three major categories...
 - Parametric.
 - Probabilistic.
 - Statistical.



- <u>Parametric</u>: equation based models based on constant parameters.
 - This is often referred to as "deterministic" because the certain inputs always produce the same output.
 - Each X yields only one Y. (Y = a + bX).
 - Parameters are often estimated through regression or simple statistics.
- For simplicity purposes the parametric tools do not include distributions or distribution characteristics like μ and σ .
- Types of parametric risk tools are.
 - Cost based engineering tools like...
 - ProSym, Aurora, unit dispatch models.
 - Financial valuation tools like...
 - DCF, IRR, MIRR, EVA, MVA, pro forma,

- <u>Probabilistic</u>: tools that simulate outcomes based on probabilities drawn from specific distributions.
- These can use deterministic equations but may run distributions of X's to generate Y's.
- Types of probabilistic risk tools are.
 - Simulated VaR, CFaR, EaR,
 - options pricing (B-S), Greeks, linear-VaR.
 - Simulations such as...
 - Monte Carlo, stress testing.
 - Stochastic models such as...
 - Mean reversion, jump diffusion, drift models, etc.

- <u>Statistical</u>: numerical values, such as standard deviation or mean, that characterizes the sample or population from which it was derived. More sophisticated tools include regression based analysis.
- Types of statistical.
 - Moments
 - Mean, variance, skewness, kurtosis,
 - Simple statistics
 - Mode, median, coefficient of variation,
 - Regression tools like
 - OLS, frontier estimation, MLE, GLS, NLS.



Risk Model Constraints

- Modeling regulated operations with industry accepted risk metrics used in merchant wholesale businesses can be misleading.
- Types of idiosyncrasies that can produce misleading results...
 - Contract capacity factor requirements,
 - Emissions constraints,
 - Start up, ramp up/down, and shut down costs,
 - Delivery specifics (such as the CDWR-Sempra contract),
 - Exchange agreements.
- Testing existing contracts yielded valuations ranging from 20% to more than 200% difference between running the models with and without these constraints.

Risk Model Constraints

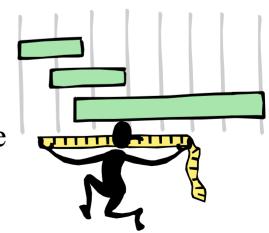
- Example of valuation with and without constraints.
- As contracts contain more optionality or increased constraints, risk metrics become more difficult to apply.
- Utility portfolios
 often contain large
 amounts of optionality
 and operating
 constraints.

	Energy Revenue (\$)	Total Variable Costs (\$)	Total Fixed Costs (\$)	Total Value (\$)
Contract X, Valuation With Constraints				
Annual				
2003	\$10,517,364	\$8,477,417	\$1,439,664	\$600,283
2004	\$10,120,596	\$8,377,263	\$1,440,357	\$302,976
Total	\$20,637,960	\$16,854,680	\$2,880,021	\$903,259
Annual 2003	\$15,190,541 \$13,830,555 \$29,021,096	\$11,549,655 \$10,600,410 \$22,150,065	\$1,710,000 \$1,710,000 \$3,420,000	\$1,930,886 \$1,520,145 \$3,451,031
Constraint 2003 2004	Differential 44% 37%	36% 27%	19% 19%	
Total	41%	31%	19%	

Risk Model Constraints

- User-defined input has a significant impact on results
 - Historical data encompasses a wide divergence of price and regulatory regimes
 - Market derived volatilities are dependent upon specific pricing models (e.g., Blacks vs. Black Scholes vs. etc.)
 - Bridging assumptions (e.g., Change in price caps, transition from market quotes to forecasts, etc.)
- Model sensitivity to inputs are difficult and/or not often measured
- Defining components of portfolio (e.g., DWR must-take gas requirements, QF costs, etc.)

Hybrid Techniques



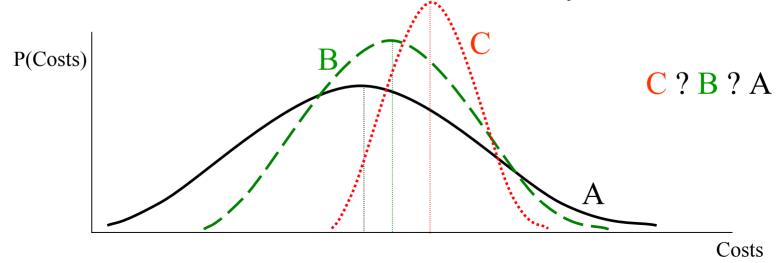
- While many of these tools fall into the general categories discussed, most models will use multiple tools.
- For example certain components to VaR models can be generated using...
 - Simple statistics (variance, covariance),
 - Parametric equations with parameters estimated by regression,
 - Can use probabilistic tools such as simulation,
 - And so on.
- Most measures of risk, however, do not yield binary strategies (i.e. If x = true, then y).
- The real world is more complicated and so decisions are often made using a hybrid of models, tools, and judgment.

Evolving Methods

- Tools are constantly being morphed for improved applications and greater predictive values.
- Multiple models (using various techniques) can yield greater confidence when model results converge.
- SCE continues to explore risk metric tools and models and will adopt appropriate tools when reasonable.
- Because of the simplicity and sensitivity of certain tools, its difficult to rely exclusively on one metric for portfolio management.
- Risk tools instead are best used over time and as an additional input to be married with reasonable judgment.
- Utility procurement plans should provide sufficient flexibility with this regard

Application of Risk Metrics

- So you have a risk metric. Now what?
- VaR, CFaR, etc., answers the question, "what is the maximum dollar amount at risk of devaluation, given a certain % probability within a certain time period?"
- So what's the right dollar amount to hedge to? \$10 million, \$50 million? What's the right % probability? 90%, 95%, 99%?
- In the case of VaR and CFaR, the models yield a distribution which can be helpful in framing the question.
- How do you make trade-offs between reducing variances and increasing expected costs?


Application of Risk Metrics

• These cost distribution choices are easy...

These cost distribution choices are not easy

ic 11

Conclusion On Use Of Risk Tools

- There are many risk tools and subsequent combinations of risk models.
- No one tool is clearly superior to all others.
- SCE is currently and will continue to research appropriate risk tools and models, and potential resulting risk metrics.
- It is an evolutionary process.
- Almost all risk metrics require an arbitrary decision of how to apply the metric.
- Risk model metrics are only one component of information necessary to make decisions.
- Risk metrics should be measured over time and used as guides; they should not be overly prescriptive and require pre-defined actions.

A Roadmap Is Required

- Procurement objective must be clearly established.
 - Portfolio risk tools and models must be compatible with the procurement objective.
- What is the procurement objective for utility procurement:
 - Mitigate procurement portfolio cost variance?
 - Meet a planning reserve requirement?
- A procurement portfolio cost variance reduction objective is not compatible with A requirement to procure planning reserves.
 - Cost variance reduction analysis may preclude the acquisition of planning reserves.

DWR Contract Cost Allocation Creates A Wild Card

- Utilities are charged with managing the risk associated with an integrated utility-DWR portfolio.
- Current cost allocation methodology allocates unavoidable DWR contract costs to all utility customers.
 - Allocation of costs associated with DWR contracts is interim.
 - How are the benefits/risks of hedging decisions related to the gas requirements for must-take energy allocated among all ratepayers?
- SCE analysis assumes that the commission will adopt A "cost follow contracts" allocation for life of the DWR contracts.
 - Dispatch of DWR contract energy may increase share of unavoidable contract costs.
- "Costs follow contracts" will eliminate unnecessary portfolio risk analysis and gas cost accounting complications.